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1. Introduction

Recently, there has been a rapid development in supersymmetric lattice gauge theories.

A systematic way to construct supersymmetric lattice formulations is developed in [1 –

4], where a space-time lattice is generated by an orbifold projection of a supersymmetric

Yang-Mills matrix theory (mother theory), and a lattice spacing is introduced by “decon-

struction” [5]. By choosing the orbifold projection properly, one can make at least one

supercharge or BRST charge preserved on the lattice. These formulations are further anal-

ysed in [6 – 10].1 A prescription to generate a lattice theory from a topologically twisted

continuum supersymmetric gauge theory is proposed by Catterall [12 – 14]. In these formu-

lations, the BRST charge of the continuum theory is preserved on the lattice. A character-

istic feature of these formulations is that all the degrees of freedom on the lattice except for

site variables are doubled by a complexification and the path-integral is performed along

“the real line”. Numerical simulations are carried out for the model of two-dimensional

N = (2, 2) supersymmetric gauge theory [15], which reproduce the Ward-Takahashi iden-

tities in fairly good accuracy. Other formulations constructed from topologically twisted

supersymmetric gauge theories are developed by Sugino [16 – 19], where it is shown that

the BRST transformation for the continuum fields can also be defined for lattice variables.

The lattice action is straightforwardly generated from the Q-exact form of the continuum

action by replacing all the fields by the lattice variables. A common feature of the above

three formulations is that they possess at least one preserved supercharge or BRST charge.

Alternative approach (the link approach) has been developed in [20 – 22], where it is claimed

that all the supersymmetry of the continuum theory is preserved on the lattice. They first

explicitly construct a supersymmetry algebra on a lattice and next make a lattice action

based on the algebra, although there are some discussions on this approach [23, 24]. For

conventional but useful approaches to supersymmetric lattice gauge theories, see [25 – 31]

1For a nice review, see [11].
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in which the theories do not have any supersymmetry on a lattice but they flow to super-

symmetric theories without fine-tuning because of a discrete chiral symmetry on the lattice.

See also [32] for a recent lattice approach to two-dimensional N = (2, 2) supersymmetric

gauge theory.

The above seemingly different supersymmetric lattice formulations with a supercharge

on the lattice are related to the orbifold lattice theories. In fact, the prescription given by

Catterall can be reproduced using the orbifolding procedure [33]. Sugino’s formulations

can be obtained from Catterall’s formulations by restricting the degrees of freedom of the

complexified fields with preserving the supercharge [34]. Furthermore, the formulations

given by the link approach have been shown to be equivalent to those given by orbifold-

ing [35]. In this sense, it seems important to examine quantum mechanical properties of

the orbifold lattice theories. In the next section, we examine the vacuum energy of the

orbifold lattice theories constructed from Q = 4 and Q = 8 mother theories. We show that

the vacuum energy exactly vanishes to all orders of the perturbation theory and the flat

directions of these theories are never lifted up by any perturbative effect. The final section

is devoted to conclusion and discussion.

2. Quantum corrections to vacuum energy

2.1 Orbifold lattice theories from Q = 4 mother theory

As discussed in detail in [1 – 4], an orbifold lattice theory is obtained by performing an

appropriate orbifold projection to a supersymmetric Yang-Mills matrix theory (mother

theory) followed by deconstruction, that is, by expanding the orbifolded matrix theory

around a classical vacuum. Let us start with the orbifold lattice theories constructed from

the dimensionally reduced four-dimensional N = 1 supersymmetric Yang-Mills theory [2].

As discussed in [10], the lattice gauge theory obtained from this mother theory is essentially

unique to be a lattice formulation for two-dimensional N = (2, 2) supersymmetric Yang-

Mills theory.2 The action of the orbifolded matrix theory (before deconstruction) is given by

Sorb =
1

g2
Tr

∑

n∈Z2
N

(

1

4

∣

∣

∣
zm(n)zn(n + em) − zn(n)zm(n + en)

∣

∣

∣

2
(2.1)

+
1

8

(

zm(n)z̄m(n) − z̄m(n− em)zm(n − em)
)2

+ ψm(n)
(

z̄m(n)η(n) − η(n + em)z̄m(n)
)

−
1

2
χmn(n)

(

zm(n)ψn(n + en) − ψn(n)zm(n + en) − (m ↔ n)
)

)

,

where m,n = 1, 2, em are two linearly independent integer valued two-vectors, and all the

fields are complex matrices with the size M . Although this action does not contain any

lattice spacing nor kinetic terms, we can regard it as a lattice action by identifying n as

the label of a site on a two-dimensional square lattice with the size N . In this sense, the

2In this paper, we restrict ourselves to consider gauge theories in d dimensional space-time with d ≥ 2.
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variables zm(n) and z̄m(n) are bosonic fields living on the links (n,n+em) and (n+em,n),

respectively, and η(n), ψm(n) and χ12(n) = −χ21(n) are fermionic fields living on the site n,

the link (n,n+em) and the link (n+e1+e2,n), respectively. Note the action (2.1) is invari-

ant under a U(M) “gauge transformation” zm(n) → g−1(n)zm(n)g(n+em) (g(n) ∈ U(M)),

and so on. As mentioned above, kinetic terms and a lattice spacing a are introduced by

expanding zm(n) and z̄m(n) as

zm(n) =
1

a
1M + z′m(n), z̄m(n) =

1

a
1M + z̄′m(n), (2.2)

then we obtain a lattice formulation for two-dimensional N = (2, 2) supersymmetric Yang-

Mills theory. Since the potential terms of this theory are given by

1

4

∣

∣

∣
z′m(n)z′n(n+em)−z′n(n)z′m(n+en)

∣

∣

∣

2
+

1

8

(

z′m(n)z̄′m(n)−z̄′m(n−em)z′m(n−em)
)2

, (2.3)

the classical moduli space (the flat directions) of this theory is parametrized by the vacuum

expectation values of z′m(n) and z̄′m(n),

z′m(n) =







b1
m

. . .

bM
m






≡ bm, z̄′m(n) =







b̄1
m

. . .

b̄M
m






≡ b̄m, (2.4)

with bi
m ∈ C (i = 1, . . . ,M) up to gauge transformations.

In this paper, we are interested in quantum corrections to this classical moduli space.

To examine them, we will estimate the vacuum energy at the point (2.4) in the classical

moduli space. Perturbatively, this is achieved by expanding the lattice action (after de-

construction) around the vacuum (2.4) and summing up all 1PI vacuum graphs. However,

recalling that the action of the lattice gauge theory is obtained by substituting (2.2) into

the action of the orbifolded matrix theory (2.1), we see that the same result is obtained by

directly replacing zm(n) and z̄m(n) in the action (2.1) with

zm(n) → zm(n) +
1

a
1M + bm ≡ zm(n) + am,

z̄m(n) → z̄m(n) +
1

a
1M + b̄m ≡ z̄m(n) + ām, (2.5)

respectively. In the following calculation, we will use this notation and estimate the vacuum

energy as a function of ai
m (i = 1, . . . ,M).

We first calculate the 1-loop vacuum energy. It is convenient to fix the gauge by

imposing a gauge condition,

D−
mz̄m(n) − D̄−

mzm(n) = 0, (2.6)

where

D−
mf(n) ≡ amf(n) − f(n− em)am, D̄−

mf(n) ≡ −āmf(n− em) + f(n)ām. (2.7)

– 3 –
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For the purpose of the later discussion, we also define

D+
mf(n) ≡ amf(n + em) − f(n)am, D̄+

mf(n) ≡ −āmf(n) + f(n + em)ām. (2.8)

By introducing gauge fixing terms and FP ghost fields corresponding to the gauge condi-

tion (2.6) in a standard way, the second-order action is obtained as

S(2) =
1

g2
Tr

∑

n∈Z
2
N

(

1

2
D̄−

n zm(n)D−
n zm(n) +

1

2
D̄−

n B(n)D−
n C(n)

+ η(n)D̄−
mψm(n) −

1

2
χmn(n)

(

D+
mψn(n) − D+

n ψm(n)
)

)

, (2.9)

where B(n) and C(n) are FP ghost fields. By integrating over the fields, we get the 1-loop

contribution to the partition function as3

Z
∣

∣

∣

1−loop
=

∫

∏

n

dΦ(n)e−S(2)[Φ(n)]

=
det ∆

det ∆
= 1, (2.10)

where ∆ ≡
∑

m D̄+
mD−

m is the Laplacian and the lattice variables have been abbreviated as

Φ(n). The denominator of the second line comes from the contributions from the bosonic

fields and the ghost fields and the numerator comes from the fermionic fields. The re-

sult (2.10) means that the vacuum energy is equal to zero and the classical flat directions re-

main flat at the 1-loop level. Note that the same calculation is carried out at the origin of the

moduli space in [8]. We can reproduce it by setting bi
m = 0 (or ai

m = 1/a) in our calculation.

One might think that, even though the 1-loop contribution to the vacuum energy is

zero, higher-loop contributions would give non-trivial corrections to the vacuum energy,

since the supersymmetry is almost broken except for the only one preserved supercharge

(or BRST charge). However, we can show that it is not the case and the above 1-loop

result is exact. The key point is that the action (2.1) can be written in a Q-exact form [2]:

Sorb =
1

2g2
Tr

∑

n∈Z
2
N

Q

(

η(n)
(

zm(n)z̄m(n) − z̄m(n − em)zm(n− em) + d(n)
)

− χmn(n)
(

zm(n)zn(n + en) − zn(n)zm(n + en)
)

)

, (2.11)

3In this calculation, the constant modes are treated by shifting the difference operators (2.7) and (2.8)

as D±m → D±m + iµ, which corresponds to adding mass terms as done in [2]. Although this modification

breaks the BRST symmetry, the final result of the following discussion still holds in the limit of µ → 0 since

the breaking of the symmetry is soft.
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where Q is a BRST charge that acts on the fields as

Qzm(n) = ψm(n), Qz̄m(n) = 0,

Qd(n) = ψm(n)z̄m(n) − z̄m(n − em)ψm(n − em),

Qη(n) =
1

4

(

zm(n)z̄m(n) − z̄m(n− em)zm(n − em) − d(n)
)

, (2.12)

Qχmn(n) =
1

2

(

z̄m(n + en)z̄n(n) − z̄n(n + em)z̄m(n)
)

,

and d(n) is an auxiliary bosonic field which makes Q be nilpotent off-shell. Recalling the

discussion in topological field theory [36], we see that the partition function of this theory

does not depend on the coupling constant g. In fact, if we write the partition function as

Z(g) =
∫

DΦe
1

g2 QΞ[Φ]
, the derivative of the partition function by g gives

d

dg
Z(g) ∝

〈

QΞ[Φ]
〉

= 0, (2.13)

where 〈O〉 denotes the expectation value of an operator O and we have used the fact that,

as long as the BRST symmetry is not broken spontaneously, the expectation value of a

Q-exact operator vanishes when the action is Q-exact.4 This means that the partition

function evaluated in the weak coupling limit, that is, the 1-loop result given above is

exact. In particular, we can expect that all the higher-loop contributions to the vacuum

energy vanish.

Note that one might think that the partition function given above expresses not the

vacuum energy but the Witten index of the theory since we impose the periodic boundary

condition to the fermionic fields in the time direction. Although it is actually the case,

the boundary conditions do not affect the perturbative contributions in the limit that the

period of the time direction goes to infinity. Therefore we can conclude that there is no

perturbative correction to the vacuum energy from (2.13).5

Another note is that we can apply the same analysis to a deformed theory given by6

Sorb =
1

2g2
Tr

∑

n∈Z
2
N

Q

(

η(n)
(

zm(n)z̄m(n) − z̄m(n − em)zm(n− em) + d(n)
)

− βχmn(n)
(

zm(n)zn(n + en) − zn(n)zm(n + en)
)

)

, (2.14)

where β ∈ R and the BRST transformation is given by (2.12). By construction, this

deformation does not spoil the Q-exactness of the action and it becomes identical with the

original orbifolded matrix theory (2.1) by setting β = 1. We can show that the vacuum

4For a discussion on spontaneous breaking of supersymmetry for two-dimensional N = (2, 2) theories,

see [37].
5The author would like to thank to H. Suzuki for discussing this point.
6The physical interpretation of this deformation is still unclear. In fact, the continuum limit of this

deformed theory is not Lorentz invariant, though it has a BRST symmetry generated by Q. The author

would like to thank M. Ünsal for pointing it out.
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energy of this deformed theory also vanishes at the 1-loop level. Therefore, repeating the

same argument above, we can conclude that there is no perturbative correction to the

vacuum energy of this theory.

2.2 Orbifold lattice theories from Q = 8 mother theory

Next we consider the lattice theories constructed from the mother theory with eight su-

percharges, that is, the dimensionally reduced six-dimensional N = 1 supersymmetric

Yang-Mills theory [3]. By performing an orbifold projection to the mother theory, we

obtain the action of the orbifolded matrix theory [10]:

Sorb =
1

g2
Tr

∑

n∈Z
d
N

(

1

4

∣

∣

∣
zm(n)zn(n + em) − zn(n)zm(n + en)

∣

∣

∣

2
(2.15)

+
1

8

(

zm(n)z̄m(n) − z̄m(n − em)zm(n− em)
)2

− ψm(n)
(

z̄m(n)η(n) − η(n + em)z̄m(n)
)

+
1

2
ξmn(n)

(

zm(n)ψn(n + em) − ψn(n)zm(n + en) − (m↔n)
)

−
1

2
χlmn(n)

(

z̄l(n + em + en)ξmn(n) − ξmn(n + el)z̄l(n)
)

)

,

where l,m, n = 1, 2, 3, em are integer valued three-component vectors, d is the number of

linearly independent vectors in {em}, and again we assume that all the fields are complex

matrices with the size M . Note that d is the maximal dimensionality of the lattice theory

obtained after deconstruction. The fields zm(n) and z̄m(n) are bosonic fields living on

links (n,n + em) and (n + em,n), respectively, and η(n), ψm(n), ξmn(n) and χlmn(n) are

fermionic fields on the site n, the link (n,n + em), the link (n + em + en,n) and the link

(n,n + el + em + en), respectively. The fields ξmn(n) and χlmn(n) are antisymmetric in

terms of a permutation of the indices.

In this case, we can construct several kinds of supersymmetric lattice gauge theories

with a different dimensionality, with a different number of preserved supercharges and with

a different lattice structure by changing the vectors em and the number of bosonic fields

to shift as (2.2) [10]. Recalling the discussion around (2.5), however, we can estimate

the vacuum energy of these theories at once by directly expanding the orbifolded matrix

theory (2.15) around

zm(n) =







a1
m

. . .

aM
m






≡ am, z̄m(n) =







ā1
m

. . .

āM
m






≡ ām. (2.16)

By fixing the gauge by the gauge condition (2.6), we obtain the second-order action,

S(2) =
1

g2
Tr

∑

n∈Zd
N

(

1

2
D̄−

n zm(n)D−
n zm(n) +

1

2
D̄−

n B(n)D−
n C(n) + η(n)D̄−

mψm(n)

– 6 –
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−
1

2
ξmn(n)

(

D+
mψn(n) − D+

n ψm(n)
)

+
1

2
ξmn(n)D̄−

l χlmn(n)

)

. (2.17)

From this expression, it is easy to show that the 1-loop contribution to the vacuum energy

vanishes again.

As for the case of the Q = 4 orbifold lattice theories, the lattice theory (2.15) possesses

a BRST charge Q that acts on the fields as [3]

Qzm(n) = ψm(n), Qz̄m(n) = 0,

Qd(n) = ψm(n)z̄m(n) − z̄m(n− em)ψm(n − em),

Qη(n) =
1

4

(

zm(n)z̄m(n) − z̄m(n− em)zm(n− em) − d(n)
)

, (2.18)

Qξmn(n) =
1

2

(

z̄m(n + en)z̄n(n) − z̄n(n + em)z̄m(n)
)

,

Qχlmn(n) = 0,

where d(n) is again an auxiliary field to make Q nilpotent off-shell. Here we can ex-

tend (2.18) by supplementing the fields with an additional bosonic field flmn(n) satisfying

Qflmn(n) = χlmn(n). (2.19)

Then the action of the orbifolded matrix theory (2.15) can be equivalently expressed in a

Q-exact form:

Sorb =
1

2g2
Tr

∑

n∈Z
d
N

Q

(

η(n)
(

zm(n)z̄m(n) − z̄m(n − em)zm(n − em) + d(n)
)

− χmn(n)
(

zm(n)zn(n + en) − zn(n)zm(n + en)
)

−
1

2
flmn(n)

(

z̄l(n + em + en)ξmn(n) − ξmn(n + el)z̄l(n)
)

)

.

(2.20)

Note that, although the partition function diverges by integration over flmn(n), it is irrel-

evant for the vacuum energy. Therefore, the 1-loop result given above is shown to be exact

by repeating the argument in the previous subsection, and the vacuum energy is expected

to be zero in all order of the perturbative expansion.

In summary, we can conclude that the flat directions of the orbifold lattice theories

constructed from the mother theory with four and eight supersymmetries do not receive any

quantum correction perturbatively.

3. Conclusion and discussion

In this paper, we examined quantum corrections to the classical moduli space of orbifold

supersymmetric lattice theories constructed from the Q = 4 and Q = 8 mother theories.

– 7 –
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We showed that the classical moduli space does not receive any quantum correction per-

turbatively, namely, the flat directions of these theories remain flat even if we take into

account quantum effects. We also modified the action of the Q = 4 orbifolded matrix

theory without spoiling the Q-exactness and showed that the classical moduli space of the

deformed theory does not receive any perturbative correction either. Note that these results

might be invalidated if the Q-symmetry were to be spontaneously broken. However, we

can expect that it does not affect the perturbative results in any way since supersymmetry

breaking is usually caused by a non-perturbative effect, if it is not broken at the tree level.

We conclude this paper by making some comments on other orbifold lattice theories.

Let us first consider an orbifolded matrix theory,

Sorb =
1

g2
Tr

∑

n

(

1

4

∣

∣

∣
zm(n)zn(n + em) − zn(n)zm(n + en)

∣

∣

∣

2
(3.1)

+
1

8

(

zm(n)z̄m(n) − z̄m(n− em)zm(n− em)
)2

+ η(n)
(

z̄m(n + a − em)ψm(n + a − em) − ψm(n + a)z̄m(n + a)
)

−
1

2
χmn(n)

(

zm(n)ψn(n + em) − ψn(n)zm(n + an) − (m ↔ n)
)

)

,

where em, a, am and a12 are three-component vectors satisfying

a + am = em, a12 + am = −|ǫmn|en, a + a1 + a2 + a12 = 0, (3.2)

zm(n) and z̄m(n) are the same bosonic fields as in (2.1) but η(n), ψm(n) and χ12(n) are

fermionic fields living on the links (n,n + a), (n,n + am) and (n− a12,n), respectively. In

particular, we assume that any of the vectors a, am and a12 is not zero. The action (3.1)

has been first given in [21] and is shown to be obtained from Q = 4 mother theory by an

orbifold projection with no preserved supercharge in any usual sense [35]. It is easy to show

that the vacuum energy of this theory again vanishes at the 1-loop level. However, in this

case, there seems to be no guarantee that higher-loop contributions to the vacuum energy

vanish, since there is no usual BRST symmetry in this theory. It would be interesting,

however, to investigate quantum corrections to this theory from the view point of the

supersymmetry algebra on lattice discussed in [20, 21].

Interesting orbifold lattice theories are those constructed from Q = 16 mother the-

ory [4], that is, IKKT matrix theory [38]. The action of the corresponding orbifolded

matrix theory is written as

Sorb =
1

g2
Tr

∑

n∈Zd
N

(

1

4

∣

∣

∣zm(n)zn(n + em) − zn(n)zm(n + en)
∣

∣

∣

2
(3.3)

– 8 –
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+
1

8

(

zm(n)z̄m(n) − z̄m(n − em)zm(n − em)
)2

− ψm(n)
(

z̄m(n)η(n) − η(n + em)z̄m(n)
)

+
1

2
ξmn(n)

(

zm(n)ψn(n + em) − ψn(n)zm(n + en) − (m↔n)
)

−
1

2
ǫmnpqrξmn(n)

(

z̄p(n + eq + er)ξpq(n) − ξpq(n + ep)z̄p(n)
)

)

,

where m,n = 1, . . . , 5, em are five-component vectors satisfying
∑5

m=1 em = 0 and d is

the number of the linearly independent vectors in {em}. Again the classical vacua are

parametrized as (2.4) with m = 1, . . . 5, and it is straightforward to show that the vacuum

energy is zero at the 1-loop level. However, we cannot apply the same argument in the

previous section since the last term of the action (3.3) is not Q-exact but Q-closed [4].

Thus, there is a possibility that the classical flat directions would be lifted up by quantum

effects. In fact, from the viewpoint of the superstring theory, we can expect that non-

trivial quantum corrections to the vacuum energy exist in this case. Recalling that the

mother theory with sixteen supercharges is identical with the low energy effective theory

on D-instantons on a ten-dimensional flat space-time, the orbifolded matrix theory (3.3)

can be regarded as the low energy effective theory on D-instantons in the background of

an orbifold.7 In this interpretation, the background (2.4) can be regarded as the positions

of D-instantons. The point is that this orbifold background breaks the supersymmetry

on the ten-dimensional space-time, so (2.4) or (2.16) gives a non-BPS configuration of

D-branes. Therefore, it seems that there should be some force between the separated

D-instantons. In terms of the theory on the D-instantons, this means the classical flat

directions parametrized by am are no longer flat if we take into account quantum corrections

to the orbifolded matrix model. It would be interesting to analyse these theories along this

way [40].
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